
August 2010 37 www.phparch.com

FEATURE

REQUIREMENTS

PHP: 5.2+

Other Software: Subversion 1.5+

Related URLs:
• Subversion - http://subversion.tigris.org
• Open Source Hosting with Google - http://code.
google.com

• Fazend - http://www.fazend.com

Prevent Conflicts in
Distributed Agile PHP
Projects

by Yegor Bugayenko

Parallel programming in a distributed team is a tricky and risky process,
especially if you want your project to be successful and delivered on
time. Subversion helps isolate programmers in their branches, but when
they start to reintegrate into trunk, conflicts may effectively ruin hours
or days of work. In this article, I will share a few best practices that
help our team manage conflicts and streamline our development process.

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://subversion.tigris.org
http://code.google.com
http://code.google.com
http://www.fazend.com

August 2010 38 www.phparch.com

Prevent Conflicts in Distributed Agile PHP Projects

Distributed development of software over the
last decade has been growing in popularity. This
is mostly due to the continuous improvement

of the quality of communication channels and the
emergence of new methods of interaction between us
over the Internet. Nowadays, brick-and-mortar offices
become less effective when a software project requires
the participation of engineers with different skills,
experience, and price.

Distributed PHP teams can be very productive,
provided they are organized and empowered by
the necessary instruments. One such instrument is
Subversion (SVN), one of the most powerful version
control systems. In this article, I’ll discuss multi-
branched parallel development and the most popular
types of conflicts that can lead to eventual project
collapses if not planned, controlled and resolved in
time. I will also suggest a number of principles and
best practices that may help you avoid such conflicts
and streamline the development process.

Why Do We Need Version Control?
It’s difficult to imagine a software team (or

even a programmer working alone) that will
keep its source code without some form of
version control. As M. Pilato, et al. explain
in Version Control with Subversion, those who
enjoy working with SVN (or Git, Mercurial,
Perforce, etc.) know that it helps them to:

• keep track of all changes made, in chrono-
logical order

• reverse back to any version from the past

• allow modifications to the same file by dif-
ferent people at the same time

• maintain parallel versions of the same file

For those who are going to start using SVN, I would
recommend hosting it via http://code.google.com if
the project is open source, and http://fazend.com if
otherwise. Once you set up a new account and your
SVN repository is created, you will obtain a URL of
its root. You need to “check out” the source code
to your laptop, make changes locally (add new files,
alter existing files, or delete obsolete files) and
“commit” your changes back to the server, like this:

$ svn checkout svn://svn.fazend.com/myRepo/trunk myRepo
Checked out revision 1.
$ cd myRepo
$ echo "<?php echo 'Hello, world';" > index.php
$ svn add index.php
A index.php
$ svn commit -m "My first simple application"
Adding index.php
Transmitting file data .
Committed revision 2.

Once the code is committed to the server, it be-
comes available to other programmers from your
team and is securely stored on the server. You don’t
need to worry about backups as it’s done by the
server free of charge.

Why Do We Need Branches?
Sooner or later, you experience a necessity to use
branches in the SVN repository. There are many
“branching patterns” that tell us when and how we
may create branches; Brad Appleton, et al. have

described many at http://www.cmcrossroads.com/
bradapp/acme/branching. To make a long story short,
we are creating a new branch when we need to iso-
late one development stream from another. We want
to make changes to the code but leave the original
version untouched and accessible. In most cases,
we don’t want those who use the original version
to know that a new branch was started and changes
made.

For example, we met a new customer for our small
application committed to the SVN repository above.
This new customer asks us to tailor the application
for them. We know this change won’t be suitable for
other customers that we already have and want to
make the requested change just for this one cus-
tomer - isolated, so to speak. So we will need a new
branch, and we’ll create one like this:

$ cd myRepo
$ svn copy ^/trunk ^/branches/specific-customer \
 -m "branch created"

Committed revision 3.
$ svn switch ^/branches/specific-customer
At revision 3.
$ echo "<?php echo 'Good bye, world';" > index.php
$ svn commit -m "new version implemented"
Sending index.php
Transmitting file data .
Committed revision 4.

Why Do We Need (!) Conflicts?
Typically, everything works fine until one day, we
decide to merge changes made in the branch with
the original version (often called trunk). Very often,
we need to do this when the changes made in

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://code.google.com
http://fazend.com
http://www.cmcrossroads.com/bradapp/acme/branching
http://www.cmcrossroads.com/bradapp/acme/branching

August 2010 39 www.phparch.com

Prevent Conflicts in Distributed Agile PHP Projects

the isolated branch would benefit trunk and other
programmers, and very often, we do it on purpose,
meaning we create a branch with the plan to merge
it back into trunk (“reintegrate” the branch) once
the changes made there are “good enough”.

SVN provides powerful instruments for managing
merging operations and resolving conflicts. However,
no computer system can resolve “semantic conflicts”
without our personal participation. Consider this ex-
ample semantic conflict:

$ cd myRepo
$ svn switch ^/trunk
U index.php
Updated to revision 4.
$ echo "<?php echo '<p>Good bye, world</p>';" > index.
php
$ svn commit -m "HTML formatting added"
Sending index.php
Transmitting file data .
Committed revision 5.
$ svn merge --dry-run ^/branches/specific-customer
--- Merging r3 through r5 into '.':
C index.php
Summary of conflicts:
 Text conflicts: 1

We can’t reintegrate our branch to trunk because
of the changes made to the original version of the
index.php file.

We have to understand that conflicts are instru-
ments used by SVN to protect repository consistency.
Without conflicts, we would effectively and quickly
turn our source code into a giant mess. Conflicts are
actually the earliest indicators of our mismanage-
ment.

There Are Four Simple Rules
I propose a principle of management for parallel pro-
gramming that minimizes conflicts and streamlines
the development process. There are four simple rules
which, if followed, will benefit your team and the
entire project:

• Turn your trunk into a fortress
• Make trunk the personal responsibility of its

guard
• Punish for abandoned branches (attacks

lost)
• Award for reintegrated branches (attacks

won)

Now, we’ll discuss each one in detail.

Turn Your trunk Into a Fortress
You have to see the source code in trunk as being in
one of two states: it’s either broken or solid. To cal-
culate its current state, you need a number of spe-
cialized software packages. The most popular ones
on the market that I would recommend are:

• phplint validates php/phtml files for syntax
correctness.

• jslint validates all your JavaScript files for
syntax correctness.

• phpunit executes certain modules of your
product with the intention of breaking
them. If all attempts fail - the code is solid.
You will have to create PHP unit tests in

We spent 10 full
weeks with 3
programmers just to
get it 80% covered
by unit tests and
compliant to phpcs/
phpmd rules.

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

August 2010 40 www.phparch.com

Prevent Conflicts in Distributed Agile PHP Projects

order for phpunit to execute them.
• phpmd detects potentially messy PHP blocks,

like functions that are too long, unused
variables or overly complex constructs.

• phpcs validates every php/phtml file for com-
pliance with PHP coding standards related
to code formatting, indentation, variable/
class/function naming, etc.

• xdebug calculates source code test coverage
and detects uncovered code blocks. This
tool may be used only in combination with
phpunit.

• phing executes all of these “validators” in a
pre-defined order and reports a summary re-
sult. Either a problem is found and the code
is broken, or it is solid.

Every time you start phing in trunk, it performs all
configured validations and reports whether the code
is broken or solid. Once phing is set up, you can start
making your validators more and more powerful. You
will turn your trunk into a fortress that will protect
itself against defective code. This process will never
stop, and the more time and effort you invest in the
fortress, the easier your life (and life of your project)
will become in the long run.

Your continuous integration server should start
phing every time a new change is committed to
trunk. If the code remains solid after this change,
the product should automatically be deployed to the
production server. If the code is broken, the contin-
uous integration server reports the problem by email
and stays, waiting for a correction. The production

server does not receive the broken code. This situa-
tion is never going to happen in your projects, and a
bit later, you will understand why.

The sooner you start protecting your fortress, the
easier it will be. When the project gets big enough,
it becomes extremely difficult to add a new validator
when the fortress is already broken. You should not
only protect it, but make it solid beforehand. Last
year, my team received a PHP project from a previ-
ous developer, and our task was to make it maintain-
able and stable. There were more than 500 classes
and more than 200,000 lines of code. We spent 10
full weeks with 3 programmers just to get it 80%
covered by unit tests and compliant to phpcs/phpmd
rules. Not surprisingly, this effort paid off. The ma-
jority of bugs disappeared, and we passed the prod-
uct to the maintenance team assured they wouldn’t
come back to us later with a broken product. We
built a fortress which is difficult to penetrate, either
occasionally or by intention.

This case demonstrates that if you start building
your fortress from the first day of the project with
the validators in place, you won’t need to spend
more time later to return your code to a solid state.

Ideally, your validation mechanisms (especially
unit tests) should be more complex and bigger in
size than the source code itself. In one of our proj-
ects, the total size of all unit tests is three times
bigger than the size of the code itself. To say the
least, this project is the most stable and maintain-
able among all others.

You also can invent and introduce validators that
are specific to your particular project. For example,

you can check your XML files for validity against XML
Schemas and DTDs. You can also validate correctness
of your production environment with phpRack frame-
work (http://www.phprack.com). You can control the
quality and completeness of your phpDoc embedded
documentation, and you can check your code with
phpcpd toolkit that will validate your code for exis-
tence/absence of copy-paste blocks.

Make trunk a Personal Responsibility of Its
Guard
Now, your source code has a mechanism (empowered
by phing) to detect whether it is broken or solid. The

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://www.phprack.com

August 2010 41 www.phparch.com

Prevent Conflicts in Distributed Agile PHP Projects

next rule dictates that you forbid access to trunk for
everybody except one person. Let’s call him or her
a “guard”. From now on nobody is able to commit
their changes to trunk, but everybody can read it.
Such a restriction shall be configured in SVN authz
file, for example:

[myRepo:/trunk]
* = r
guard = rw
[myRepo:/branches]
* = rw

From now on every change in trunk must comply with
this simple workflow:

• a programmer creates a new branch
• the programmer makes changes to the code

in the branch
• the programmer reports to the guard that

the branch is ready
• the guard runs phing manually to confirm

that the code is not broken
• the guard merges the branch into trunk

Ideally, the guard should not be one of the program-
mers. He should accept only those changes that
don’t break the product or penetrate “the fortress”.
Programmers and other engineers responsible for
functionality implementation and bug fixing are very
motivated to deliver their results quickly. Most often
speed is the enemy of quality. This is where the
guard plays an important role. They should not allow
programmers to break the product by erroneous code
in their branches and should say “no” to branches

that compromise the entire fortress.
It is important to motivate the guard for such a

“conflicting” behavior. They will be in a difficult po-
sition in front of the entire team. It might also be a
good option to have the guard located remotely, as
far as possible from others.

In a bigger project, the guard and deployment
manager/engineer roles can be shared. A deployment
engineer in enterprise projects is responsible for the
configuration of package deployment mechanisms
and the development of integration scripts. This
person creates a build.xml script for phing and keeps
an eye on it during the entire project life cycle. They
are a good candidate for the guard role.

Punish for Abandoned Branches (Attacks
Lost)
When the fortress is in place with strong validators
and you have a guard who is responsible for reject-
ing branches that break the product, it’s time to
establish the first rule for the team: “abandoned
branches will be prosecuted”. A branch is “aban-
doned” if it is created, commits are made, but it is
never reintegrated to trunk. Of course, we are talking
about branches that were initially planned for rein-
tegration.

A scenario of such an abandonment may look
like this: A programmer starts to implement a new
feature and creates a new branch, he commits his
changes to the branch and reports to the guard that
the branch is ready for trunk, but the guard refuses
to reintegrate it because the changes introduced

Two obvious
recommendations
may help: reintegrate
as soon as possible,
and make your
changes as small as
possible.

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

August 2010 42 www.phparch.com

Prevent Conflicts in Distributed Agile PHP Projects

break the product. The programmer makes correc-
tions to try and solve the problem and gets back to
the guard again and again. After a number of failed
attempts, the programmer gives up and goes to an-
other feature or starts a new branch for this feature.

No matter how this sad story ends, the time in-
vested in the programming was just wasted. The
changes never reach trunk, and this is the personal
fault of the branch’s author, the programmer.

To continue the analogy we are already using, the
programmer attempted “an attack” on our fortress.
He tried to penetrate the wall of validators and place
his changes (new source code) inside it. He lost
the attack, and the guard won. This was obviously
a fault for the entire project: time was wasted, the
feature was not implemented, and overall morale
went down.

To help discourage and prevent this, try to invent
a mechanism of “punishment” for such situations
that are specifically tailored for your own team.

Award for Reintegrated Branches (Attacks
Won)
Some “attacks” will be won by programmers and new
pieces of source code will reach trunk and become
part of the fortress. The size of the fortress will grow
without losing strength. This means that the project
will grow in size while staying maintainable, stable,
and extendible.

Working in parallel, programmers don’t make prob-
lems for each other since every change (a new fea-
ture or a bug fix) is isolated and reaches trunk as a

transaction, meaning that it is either in or rejected.
Try to establish some motivational policy to

reward those who successfully reintegrate their
branches into trunk and close them in time. Two
obvious recommendations may help: reintegrate as
soon as possible, and make your changes as small as
possible. The same recommendations go for the da-
tabase transaction. In order to avoid deadlocks and
collisions, your transactions have to be as small as
possible and should happen often.

In our projects, we’re trying to encourage pro-
grammers to reintegrate branches within one work-
ing day. If you start a new branch in the morning,
you have to reintegrate it before the end of the day
(of course, the guard will do the actual reintegra-
tion, you will just let them know that the branch is
ready). Typically, changes for one branch take 2-4
working hours for one programmer.

According to our statistics, an average branch
makes changes to 20-100 lines of code. If the
branch is bigger (over 100 lines), it becomes too big
and should be split onto two (or more) smaller ones
which will have to be implemented and committed
sequentially. If the branch is smaller than 20 lines,
it can be implemented together with another branch.
In other words, we’re trying to group micro features
and minor bugs into aggregate branches.

Conclusion
Distributed parallel development is becoming more
popular for PHP projects. However, communication
problems often lead to collisions and repository

conflicts, which are more severe and destructive
than in collocated teams. A few recommendations on
how to avoid such conflicts were discussed in this
article. When used together in your project, they will
protect you against major problems.

The four principles explained above may help your
team, if you understand the key principle: “trunk is a
fortress”. Email me (yegor@tpc2.com) if you would
like to share your own success stories of resolving
conflicts in parallel programming.

YEGOR BUGAYENKO is the lead architect of the FaZend
Framework and a proud holder of the ZCE, ZFCE and
PMP certificates. He is also the director and co-founder
of TechnoPark Corp., a custom software development
company specializing in complex and distributed web
applications.

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

